wtorek, 7 czerwca 2011

Transit Network Design Problem for “monocentric” network solved by means of poli-criterial genetic optimization method.

Summary:

Paper shows an approach to solve Transit Network Design Problem. Considered problem covers regional transport system (Lublin region in Poland). Input data were GIS transport network and population distribution. Complex optimization problem was simplified by means of graph theory methods. Final optimization problem was poli-criterial genetic algorithm. Result of solving problem was Pareto frontier, being a set of non-dominated solutions. Optimization process was continuation of Visum Zone definition described here.



Background: 

I got GIS database consisting of:

·        Location of  place with information about their population (fig.1)

·        Transport network (roads + railway) (fig.2)

·        Administrative division (zones) (fig.1+2) (each zone was about 50k inhabitants, 2k km2)



I presented the network as a graph consisting of 82 edges: 

fig.3




Method:



I solved poli-criteria problem of Network Layout Optimization. Two contrary criteria were:

1)     Operator cost minimization criteria: Total network length (km) and

2)     Passenger Cost minimization criteria: Total passenger kilometers (paskm) represented via two separate criteria:

a.     Travel times to get co central points of the network

b.     Overall accessibility, being DistanceMatrix x OD Matrix ^(-1) (reciprocal was employed to transform criteria into minimization)



Decisive vector was 82 element Boolean vector. Each element of vector was reflecting graph edge.



I solved problem using Multi-objective Genetic Algorithm, minimizing three given criteria. Result was Pareto Frontier. Pareto frontier final population is shown here. Additional criteria being standard deviation of accessibility is proposed:




Nuber In Pareto final population

(Lp)

Passenger cost 1

Operator Cost 

Passenger Cost 2

Additional Criteria

Passenger kms[1000 paskm]

Network Length [km]

Accessibility

[pop./km]

Standard Deviation of Accessibility for Zones

8

   161 000   

  1 218   

   732 902   

99,3

22

   161 000   

  1 282   

   733 704   

99,3

10

   161 000   

  1 276   

   733 447   

99,3

28

   128 000   

  1 423   

   723 114   

66,2

2

   122 000   

  1 851   

   640 084   

62,8

20

   123 000   

  2 241   

   653 834   

63,7

15

   122 000   

  2 457   

   667 836   

62,8

1

   133 000   

  1 624   

   814 889   

71,1

23

   132 000   

  1 707   

   823 710   

67,5

19

   126 000   

  2 400   

   882 689   

68,2

27

   121 000   

  2 700   

   900 210   

59,6

17

   121 000   

  3 521   

   921 467   

59,6

21

   136 000   

  2 445   

   886 533   

72,6

18

   122 000   

  2 556   

   900 101   

62,8

7

   122 000   

  2 898   

   908 254   

62,8


 Pareto frontier for two criterias can be seen here:



Network diagrams for selected solutions are shown here:



network no 8

network no 17

network no 22
Conclusion:

User friendly tools combined with good quality of input data can perform much more than you expect with basic transport models. Built-in optimization for tranpsport modeling - sounds good.

Brak komentarzy:

Prześlij komentarz